« | Home | »

Micro-livestock: Little-known Small Animals with a Promising Economic Future – Microbreeds

By pinoyfarmer | February 12, 2010
Bookmark and Share

Part I : Microbreeds

Cattle, goats, sheep, and pigs supply millions of people around the world with the bulk of their cash and animal products. Yet scores of breeds – especially in the tropics – are left out of livestock development projects merely because they are considered too small. These “microbreeds”‘ have sometimes been considered genetic dead ends because they appear undersized and puny. Many of these traditional animals – some in local use for thousands of years – are disappearing, and even the small ancestors of large modern breeds are becoming extinct.

These small breeds deserve to be studied and developed in their own right. Throughout Africa, Asia, and Latin America, these usually hardy animals are especially adapted to traditional husbandry practices and harsh local conditions. Some have remarkable qualities and are well adapted to resist hostile weather, ravaging pestilence, and poor diets. In remote places and in areas of extreme climate, they are often vitally important for basic subsistence.

Indeed, because of stress or disease, or insufficient forage, land, or money, microbreeds may be the only practical livestock in many settings. Their individual output may be low, but it can be efficient considering the lack of care and poor feeds they are given. Their availability and the growing number of small-sized farms in the developing world make them increasingly worthy of consideration.

The following chapters in this section describe microcattle, microgoats, microsheep, and micropigs.

1. Microcattle



For the purposes of this report, “microcattle” are considered to be small breeds of cattle (Bos taurus and Bos indicus) with a mature weight of about 300 kg or less. In many areas of the developing world, these are actually the animals most widely held by farmers and pastoralists. They are often treasured because of their resilience and simple requirements. Many survive and produce under harsh conditions, grow rapidly, calve easily, show good maternal ability, yield lean meat, or have other advantages.

Microcattle have generally been ignored in the push towards larger animals, but they seem inherently suitable for traditional and small-farm husbandry. As rural people in developing countries improve their own productivity, as they become more aware of nutritional needs, and as they depend more upon cash economies, microcattle could become vital means for improving personal, dietary, and economic status.

AREA OF POTENTIAL USE

Worldwide.

APPEARANCE AND SIZE

Cattle have been classified in many ways, but they are generally designated as humped or humpless types. However, clear distinctions among them are sometimes difficult or impossible to make because they have intermingled for thousands of years. Representative microcattle types are listed at the end of the chapter.

DISTRIBUTION

More than two-thirds of the world’s 1.3 billion cattle are found in the developing world; one-third is in the tropics. As noted, a considerable number of these could be called “microcattle.”

STATUS

Many strains of microcattle are threatened with extinction because of replacement or crossbreeding with larger types. This is in some respects shortsighted because promoting just a few breeds contributes to narrowing of the genetic base, and valuable traits may be lost when selection is done to conform to any preconceived standard, including large size.

HABITAT AND ENVIRONMENT

Microcattle are adapted to a wide variety of habitats. Many types thrive – even with little or no attention – in climates that are hot, humid, arid, or beset by diseases and parasites.

BIOLOGY

Cattle are ruminants and digest fiber well, although they are selective foragers and prefer tender grasses and low-growing legumes.

As with other tropical cattle, microbreeds generally reach physical and sexual maturity in 2 or 3 years. Many can breed year-round when conditions are favorable (gestation lasts about 9 months). Cows may remain fertile 10 years or more, and can live more than 20 years.

BEHAVIOR

Cattle usually graze from as few as four hours to as many as eight hours a day. If feed is of poor quality, they must forage (and ruminate) longer to receive adequate nutrition.

Microcattle are commonly docile and undemanding animals, and many small breeds are surprisingly responsive to humans.

USES

Like conventional breeds, microcattle produce the same well-known products: meat, milk, manure, hides, horn, blood, and bone. They are also used for traction.

Small cattle often produce only modest amounts of milk and meat per animal. However, given higher stocking rates, a herd of microcattle is often able to outyield larger, genetically improved animals on a per hectare basis, especially under stressful conditions. When their ability to survive adversity and poor management is taken into account, they may often be far and away the most efficient cattle for traditional husbandry.

Surprisingly, there is a place even for small draft animals. They tend to be active, thrifty (efficient), and more maneuverable in tight spaces, and so are adapted for use in the small fields, terraces, and paddies that are becoming increasingly common. The small hill cattle of Nepal, for instance, are valued because they can negotiate steep slopes and narrow terraces on Himalayan mountainsides.

HUSBANDRY

Microcattle are handled like their larger counterparts, but herding, tethering, fencing, and hobbling are generally easier.

ADVANTAGES

Cattle are familiar animals that are accepted in nearly all cultures; their meat, milk, manure, and leather are in demand almost everywhere. In many societies, beef is preferred over other meats, even by those who can rarely afford it.

In most areas, organized breeding, production, and marketing associations are already in place. Microcattle can also integrate well into traditional forms of husbandry, whether in pastoral herds of hundreds or as solitary backyard milk cows.

Under humid and hot conditions, microcattle probably suffer less than larger breeds because their greater ratio of skin area to body mass enhances their ability to shed heat.

The number of cattle that can be kept on a given parcel of land may be increased, sometimes even doubled, with smaller animals. Microcattle can also be penned and fed cut-and-carry forage more easily than can larger cattle, and more of them can be maintained on the same amount of feed. This permits more continuous production and less financial hardship when an animal perishes.

Small cattle may require less labor because they are generally easier to handle, herd, confine, and transport. They usually have few problems with calving, and as a rule require little or no assistance.

Some microcattle have unusual tolerances to disease. In Africa, for instance, there are breeds that tolerate or resist trypanosomiasis, a parasitic disease that makes large areas of that continent uninhabitable for most other cattle breeds. Others seem more tolerant of internal or external parasites, theileriosis (east coast fever), rinderpest, or other afflictions.

LIMITATIONS

Microcattle often lack the prestige of larger breeds.

When given quality forage and supplemental feeding, small unimproved cattle may not match the overall productivity of the large, highly developed breeds. Their greatest potential may prove to be for traditional husbandry and for grazing marginal areas where survival is more important than feed efficiency.

BONSAI BRAHMAN

In Mexico, researchers are deliberately creating microcattle. Since 1970, Juan Manuel Berruecos Villalobos, former director of the Veterinary Medicine school at the National Autonomous University, has directed this enterprise. He and his colleagues have miniaturized cows by selecting the smallest specimens out of a herd of normal-sized Brahman cattle and breeding them with one another. After five generations, adult females average 15-180 kg adult males 20-220 kg. A few of the smallest cows are now only 60 cm tall and 140 kg in weight. Merely one-fifth of normal weight, they are shorter than the turkeys that share the barnyard with them. Indeed, they even get lost in the grassy pastures so that the farmers cannot see them.

This program seems to have yielded a productive animal that can be cheaply and easily maintained in a small space. Berruecos has demonstrated that the tiny cows can be stocked on one-third the area needed to support one normal-sized cow. He reports that they are giving remarkable amounts of milk: up to four lifers a day, compared with six lifers from their full-sized counterparts. On a feed-intake to weight-gain basis, the tiny cattle are no less efficient than their normal-sized counterparts.

Although 17 years have gone into the selection of what Berruecos calls his “bonsai cattle,” the process is not yet finished. Future goals include testing embryo transplants to see if one normal-sized cow can support multiple “microfetuses” (possibly as many as eight). This would help to rapidly increase the numbers of the miniature form, which weigh merely 4-5 kg at birth.

All in all, the Mexican researchers see miniaturization as a new option for governments and farmers increasingly squeezed by shrinking farm land and rising production costs. Small livestock they say, are a way to produce more food on less land faster. For example, a campesino with almost no land can have one or two bonsais, but could never maintain a standard-sized cow.

RESEARCH AND CONSERVATION NEEDS

Their adaptability and robustness make microcattle worthy of preservation, study, and greater use, and they should be incorporated into many ongoing programs.

Selective breeding, although infrequently attempted, can probably improve productivity significantly. Records of breed history should be established, and unusual or special characteristics noted and the information disseminated.


Original distribution of wild cattle and banteng (Based on Mason , 1984)

In areas where small, indigenous breeds are being replaced, representative populations should be maintained and studied to increase understanding of their adaptive diversity and to retain a genetic storehouse for the future.

REPRESENTATIVE EXAMPLES OF MICROCATTLE

Dwarf West African Shorthorn
West African coastal forests, and inland. Female 125 kg; male 150 kg. Adaptation to harsh, humid climates and good resistance to trypanosomiasis and other diseases allow these small animals to exist where other cattle die. They are perhaps the smallest cattle of all (often weighing less than 100 kg). In the areas of worst disease and highest rainfall, this hardy animal is often found thriving, but half wild.

Muturu Nigeria. Female 160 kg; male 210 kg. This notable subtype is slightly larger. It is the most trypanotolerant of all cattle, showing no symptoms or loss of vitality. It is widely kept, mostly as a village scavenger and often as a pet, and yields a high percentage of meat.

N’Dama

West Africa. 200-400 kg. These active, stocky animals utilize low-quality forage, produce good beef, and are used as light draft oxen. Milk production, though poor, improves with feeding level. N’Dama mature early and are exceptionally fertile, and they have already become important in breeding programs. They are resistant to trypanosomiasis, and can exist where temperatures average 30° C with 1,500 mm annual rainfall. In the least hospitable areas, N’Damas ranging down to 200 kg are often the only cattle that can remain productive.

Rodope

Southeastern Europe. Female 200 kg; male 350 kg. A humpless multipurpose breed – draft, milk, and beef – that is exceptionally hardy. The milk is high in butterfat. Possibly adaptable to the subtropics. It is rapidly being lost to crossbreeding.

Zebu

Zebus are among the most important tropical domestic animals. However, the dwarfs are not well known, although in many areas they are preferred, especially as draft animals. Zebus use less water, even though their sweat glands are larger and more numerous than those of most other cattle. All have a low basal metabolism and resist heat well. In general, they also have high resistance to ticks and other parasites.

Taiwan Black Taiwan. Female 250 kg; male 250 kg. Well adapted to poor tropical conditions, these work animals are also used for meat.

Kedah-Kelantan Malaysia. Female 200 kg; male 250 kg. Hardy, well adapted cattle with exceptional fertility on a poor diet, both sexes are used as draft animals as well as sources of meat and cash.

Sinhala (Dwarf Zebu) Sri Lanka. Female 200 kg; male 250 kg. An ancient type of zebu, preferred for its handiness in cultivating small paddies and terraced fields.

Nuba Dwarf Sudan. 180-220 kg. These work animals are well proportioned but are not slaughtered for meat, and milk production is low. Although tolerant to trypanosomiasis, their numbers have dwindled because of crossbreeding.

Small Zebu Somalia. 160-230 kg. These small native cattle are used for beef, milk, and for work. They are well adapted to poor feed in a desolate environment.

Abyssinian Shorthorn Zebu (Showa) Central highlands of Ethiopia. Female 225 kg; male 305 kg. These widespread, small-humped cattle are very hardy. They produce beef and are generally milked, with surplus production about 2-4 kg daily. Resistant to many parasites, they also have a gentle disposition and make good work animals.

Dwarf Zebu (Mongalla) Tanzania, Uganda, and Kenya. Female 150 kg; male 250 kg. A highly variable, long-entrenched, small, East-African zebu with some nonzebu blood. Pastoralists favor it because of its hardiness. Although slow-maturing, it is well-fleshed, can yield excellent beef, and some types are milked.

Mashona Zimbabwe. Female 200 kg; male 250 kg. This hardy zebusanga type (see below) is widespread in drier areas and has a high resistance to disease and parasites. Since the 1940s, it has been bred for beef production and selected animals now weigh more than 500 kg.

Mini-Brahman Mexico. 135 kg. Downsized from 450-kg Brazilian zebus through selective breeding by Mexican researchers, these gentle animals are reported to yield two-thirds as much milk (3-4 liters daily) as the parent stock. Because of much higher stocking rates on grass, production per hectare is reportedly greater than with full-sized animals (see sidebar, page 22).

Criollo

Central and South America. Descendants of Spanish and Portuguese cattle imported over 400 years ago, “criollo” cattle have adapted to a wide range of harsh climates. Many varieties are small: mature females often weigh 200-300 kg or less. They sometimes produce little beef or milk under traditional conditions and management, but they are extremely hardy and survive when other cattle perish. Through importation and crossbreeding, many local types have been lost or are threatened.

Chinampo Baja California, Mexico. 200-350 kg. Extremely tolerant of wild desert conditions, these docile criollo cattle exist largely on scrub and cactus. They get most of their water from succulent plants, have a low metabolic rate and body temperature, and are mostly active at night.

Florida Scrub Florida, USA. 225-300 kg. Genetically isolated for more than 300 years, the Florida Scrub is very hardy in harsh, subtropical conditions. It has good resistance to ticks and screwworm, and can subsist on forage with a high roughage content.

Sanga

This type – an ancient cross between longhorns or shorthorns and humped animals – is found throughout eastern and southern Africa. It weighs from 150 to 500 kg or more. Some types have been selectively bred or crossed with European cattle and are quite productive.

Bavenda Transvaal, South Africa. 240-290 kg. This hardy and disease tolerant tropical variety is small and prolific. It is generally used for draft, barter, and beef. However, it has been crossbred with larger animals so frequently that the smaller types are almost extinct; most “Bavendas” now weigh more than 300 kg.

Ovambo’ Northeastern Namibia. Female 160 kg; male 225 kg. A calm and docile animal with a small hump, it is used by seasonal pastoralists for beef and milk.

Nilotic Sudan. 180-300 kg. These cattle of southern Sudan show great variation in size, partly due to environmental factors. They are generally resistant to local parasites and worms, have good potential for increased beef production, and their milk is very important locally.

Chadian “Native” and Dwarf Black Cattle

Chad. Female 225 kg; male 275 kg. These two types are small, humped meat animals that graze the sparse savanna and are very drought resistant. Little scientific information exists about them.

“Arab Cattle”

Middle East. Small types (female 225 kg; male 300 kg) are used for meat and some milk, especially in Lebanon. There are many local forms with variable appearance, but all have small humps. Well adapted to grazing sparse vegetation on rough land, they are becoming rare due to crossbreeding.

Hill Cattle

Nepal. Female 160 kg; male 200 kg. A widespread type often recrossed with Indian zebu animals, they are bred to be small. They are thrifty creatures that maintain themselves well on poor forage. Bulls make sure-footed draft animals on rough ground and slopes, and the cows are milked.

Tibetan Dwarf

Tibet. Less than 250 kg. These humpless cattle are used as pack animals and can tolerate poor forage and high altitudes.

Yellow Cattle

Southwest and south China. Female 220 kg; male 380 kg. In the subtropics and tropics, small multipurpose types of Yellow Cattle withstand high temperature and humidity. They are used mainly for work and meat, and seem well adapted to poor feed, harsh conditions, and rugged terrain. The Chowpei (190-380 kg) is a hardy working breed of more temperate areas in Hubei Province.

Cheju Hanwoo

Korea. Female 230 kg; male 280 kg. A yellowish-brown Cheju Island native that has almost no calving difficulty, it is well adapted to poor grazing conditions in harsh environments and is docile and obedient.

Madura

Indonesia. Female 220 kg; male 300 kg. An ancient cross between humped cattle and the banteng (see sidebar), these heat- and disease resistant hybrids also have good grazing and mothering ability, and are kept in the most extreme humid tropical environments. Breeding for fighting and racing has given them a poor disposition.

Dexter Cattle

Ireland and North America. 220-360 kg. This breed can be traced back to eighteenth-century Ireland and is believed to have been developed by peasant farmers living on rough land. It is exceptionally hardy and produces both milk and meat. In North America, it has become popular among city folk who acquire country property, as this microbreed is particularly well suited to their usually tiny farms.

BANTENG: THE CUTEST COW

The banteng (Bos Javanicus) is a small Southeast Asian bovine with a promising future.* It is a different species from cattle. The two will interbreed, but the hybrid offspring are normally sterile.

Although almost entirely neglected by the animal science community, the banteng is remarkable for an ability to thrive under hot, humid, and disease-ridden conditions where cattle often grow poorly. The sexes are easily distinguished: males are jet black, females are golden brown. Both have bright white socks and rumps as if they had been freshly whitewashed.

Wild banteng are found in remote areas of countries from Burma to Indonesia. But only Indonesia has used it as a farm animal so far. It has more than 1.5 million domesticated banteng – some 20 percent of the country’s total “cattle” population. Indonesian farmers value the animal’s agility, which allows them to cultivate Relds too narrow for cattle to turn the prow. In addition, gourmets consider banteng meat the tastiest of all. Indonesia appreciates the banteng so much that it has established a genetic sanctuary on the island of Bali – banning cattle in order to maintain the banteng’s genetic purity.

Outside Indonesia, only a few scientists have studied this animal, but it seems clear that it is particularly useful under tropical conditions. In heat and humidity, it thrives; even when cattle are starving, one rarely sees a skinny banteng. And demand for its meat is never ending.

2. Microgoats

More than 90 percent of the world’s nearly half billion goats (Capra hircus) are found in developing countries; many weigh less than 35 kg fully grown.´ Such “microgoats” are noted for their high reproductive rates, rapid growth, early maturity, tasty meat, and rich milk’ as well as for their robust constitution, ease of handling, and tolerance of climatic stress and poor feeds.

To many people – especially where pigs and poultry are not common – meat and milk from microgoats are the primary animal proteins consumed during a lifetime. Perhaps the world’s best foragers, goats eat practically anything made of cellulose, and are not dependent on grass. Because of their unselective feeding behavior, they are capable of living where the feeds – tree leaves, shrubs, and weeds – are too poor to support other types of livestock.

Such microgoats deserve wider recognition, for they are often the poor person’s only source of milk, meat, and cash income. They are cheap to acquire and easy to maintain, even by people with little property and scarce resources.

AREA OF POTENTIAL USE

Worldwide, especially in arid and semiarid climates.

APPEARANCE AND SIZE

Goats generally have a long snout and an upright tail, by which they can be distinguished from most sheep. The mouth is unusual in having a mobile upper lip and a grasping tongue, which permits the animal to nibble even tiny leaves on spiny species.

Common commercial goat breeds generally weigh between 60 and 100 kg, with some weighing more than 200 kg. Microgoats may weigh less than 15 kg. Representative examples are listed at the end of the chapter.

DISTRIBUTION

Worldwide, with half in Asia and one-third in Africa.

STATUS

The FAO projects that world numbers may nearly double by the turn of the century. Goats are thus not endangered, but in some areas select populations of feral goats are being deliberately eradicated, with the consequent loss of potentially valuable genes. Some small breeds are also threatened by excessive crossbreeding with larger types.

HABITAT AND ENVIRONMENT

One of the most adaptable of all livestock, goats can persist in conditions from arid to humid, and from sea level to high altitude. They are especially well adapted to hot, semiarid climates and to rocky, barren terrain.

BIOLOGY

These ruminants can subsist on many feedstuffs that would otherwise be left to waste. Although selective browsers, they often prefer coarse leaves (including palm fronds) and shrubbery to palatable forage grass.

Most microgoats mature quickly, and in the tropics they can generally breed year-round. Their reproductive potential has often been underestimated; kidding is rarely difficult, and many types produce twins and sometimes even triplets or quadruplets.

In hot, dry areas, goats require less attention than other livestock, and smaller goats have the added advantage of better heat dissipation. Some microgoats may also show disease resistance. For example, tolerance to trypanosomiasis makes them an important livestock in many regions of Africa.

BEHAVIOR

Goats are generally gentle, but can be easily frightened. They may become stubborn and aggressive when threatened or thwarted, and can prove hard to confine.

If their feed smells of other animals – particularly of other goats – they usually shun it unless nothing else is available.

USES

Microgoats mainly produce meat and form an important part of the diet in southern Asia, the Middle East, Africa, and Latin America, especially the Caribbean. Goat is sometimes a preferred meat, and there are few social or religious prohibitions against eating it.

Some microgoats are good milkers, and under stressful conditions they may keep producing when other livestock are dry. Goat milk is a valuable dietary supplement: it is nutritious, easily digestible, and usually commands premium prices. It makes excellent cheese and yogurt and can be used by people allergic to cow’s milk.

Microgoats produce some of the finest and most valuable fibers in the world. Angora and Cashmere goats often weigh less than 30 kg fully grown, for example.

Goats produce a fine-textured, durable leather that finds extensive uses both locally and internationally. Horns, hooves, blood, and bone meal also have commercial value. Manure is another important product, and comes in fairly dry pellets that are easy to collect, store, and distribute.

Goats perform important functions in land management. Seeds of many trees (Acacia and Prosopis, for example) are “scarified” by passing through the goats’ digestive system, fostering germination and natural revegetation. With care, goats can also be used to clear land of weeds and brush.

HUSBANDRY

Goats are often allowed to roam and scavenge for their own food. They form strong territorial attachments and can be trained to stay within a designated area. However, they cannot be kept from investigating – and quite probably devouring – anything within that territory. They are persistent browsers, so it is essential to prevent overstocking as well as raids on crops.

Variety of diet is important, and goats show much individuality in feed preferences. They are often raised on crop residue and kitchen refuse.

Goats can be run with other livestock without creating serious competition. The goats browse weedy shrubs, whereas the sheep and cattle graze more on grasses.

Although perhaps the hardiest of all livestock, most breeds benefit when they are provided shelter from rain and high-noon sun. Abrupt chilling and poor ventilation can cause severe respiratory problems. They are also susceptible to various maladies, such as internal parasites, especially when confined. The highest mortality, however, is caused when very young kids are not supplied with adequate feed and clean, dry shelter.

ADVANTAGES

In most developing countries goats are already prominent in rural life. Common almost everywhere in Africa, Asia, and Latin America, they are dependable multi-use animals. They are particularly important in providing ready cash, such as for school fees, taxes, marriages, or funerals.

Goats integrate well in mixed agriculture, for example, by consuming leafy wastes, clearing land, and contributing fertilizer. In many places they are raised almost exclusively by women and children. If confined, goats require only simple, inexpensive shelters or pens, which makes them especially important as subsistence animals. In many situations, they may be the most efficient and economic producers for smallholders.

These animals have a relatively fast rate of growth and early reproductive age, even under harsh conditions. They can graze rougher terrain than cattle and most sheep, can go for longer periods without water, and forage well in wooded areas where grass is lacking. They can derive most or all of their diet from roughage unusable by humans; high-energy feeds, such as protein supplements or carbohydrate supplements, are usually not needed even to fatten them for slaughter.

Goats are generally healthy and are not affected by many of the parasites and diseases that ravage other livestock. Some resistance to mange, internal parasites, foot-and-mouth disease, and other livestock scourges has been reported.

LIMITATIONS

In some places (notably, in industrialized nations) there is a strong prejudice against goats and goat meat.

Smallness makes microgoats targets for predators and thieves.

Many small goats are poor milkers, especially under hardship conditions; however, even small amounts of milk can often fulfill a child’s daily nutritional requirement or reinforce a nursing mother’s diet.

Goats are independent and may wander away if not watched, and they can be difficult to pen. They may also have an unpleasant odor when kept confined (males are particularly malodorous during rutting season).

Goats are often disparaged for degrading land and destroying vegetation because they continue to survive on overutilized lands often laid waste by mismanagement of sheep or cattle.

FRESH GENES

A rare wild animal with spectacular horns, the bezoar (Capra aegagrus) is the goat’s wild ancestor. People domesticated it before 7000 B.C., probably in the mountains along the Iran/ Iraq border. Until recent times, it remained widely scattered across the vast region between Greece and Pakistan, but it now exists only in pockets and is threatened with extinction.

This would be a tragedy because the bezoar is a resilient wild species that crosses readily with domestic goats, and it could pass on its genetic inheritance for heat, drought, and cold tolerance: disease resistance; and other survival qualities.


Distribution of the bezoar. The arrow indicates the area where it was probably first domesticated, resulting in the goat as we know it (From Mason 1984)

Fascinating science and valuable results probably await those willing to study this hardy, handsome creature and to explore the reharnessing of its genetic endowment. Today the bezoar is considered merely a trophy for hunters. The power of its genes to refresh – perhaps even revolutionize – the world’s 500 million goats has been lost to sight.

RESEARCH AND CONSERVATION NEEDS

The microgoat’s potential has hardly been realized. More research on performance and husbandry is needed to preserve and restore small breeds. Selective breeding for prolificacy, viability, and rapid growth, as well as more selective on-site culling, could greatly improve both meat and milk yields and quality.

Management systems that exploit smallness, stabilize production, and preserve the environment should be introduced and publicized in appropriate goat-rearing areas. Careful assessments of indigenous management methods should be made, particularly emphasizing their desirable characteristics. Improving hygiene in the wet season and supplemental feeding in the dry season are also important, as are disease- and parasite-control measures.

The undomesticated ibex and markhor could possibly be major contributors in the development of new, useful breeds for tropical and arid regions (see sidebar, page 42).

REPRESENTATIVE BREEDS OF MICROGOATS

West African Dwarf (Djallon)

West and Central Africa. Female 20 kg; male 30 kg. Adapted to humid lowlands, this widespread goat is particularly valuable for meat and skin production. Generally, it is bred for meat, but milk is sometimes an important secondary product. Sexual maturity is very early (3-6 months), and quadruplets occasionally occur (most goat breeds normally produce only single births). Related types go by the names “Cameroon Dwarf,” “Dirdi,” and “Nigerian Dwarf.”

Nubian Dwarf

United States. 35-40 kg (often less). A stable miniature variety of the milking Nubian, this microgoat has been developed recently in the United States by crossing standard-sized Nubians with the West African Dwarf. It combines a good milk output with high levels of butterfat.

American Pygmy

United States. 15-25 kg. Derived from the West African Dwarf, it is noted for its hardiness and good nature, good milk production, and adaptability to various climates. There are several varieties, some for milking, others for meat.

Sudanese Nubian

Northern Sudan. 25-30 kg. Widespread milk goats of riverain and urban areas.

Sudanese Dwarf

Southern Sudan. 11-25 kg. A very hardy desert goat similar to the West African Dwarf, it averages 15 kg, but some mature individuals may weigh as little as 11 kg. Used for meat and hides, it produces little milk.

Small East African

Kenya, Uganda, Tanzania. 20-30 kg. A widely neglected meat and hide animal found over a wide range, it is fast growing (sexual maturity at four months) and extremely hardy.

Mauritian

Mauritius. 25-30 kg. A prolific, year-round breeder raised for meat production, it is often confined in simple shelters from birth to slaughter. Perhaps because of this isolation, mortality is less than 10 percent, even with little or no veterinary care.

Criollo

Latin America. “Criollo” is a name given to several breeds of ancient Iberian blood with local adaptations to many unfavorable conditions. They are often small and hardy.

Creole Caribbean. Females 20 kg; males 25 kg. Robust meat goats of Spanish or West African origin that are kept throughout the Caribbean.

Crioulo Brazil. 30-35 kg. A meat and skin goat derived from Portuguese ancestors, it is hardy, prolific, undemanding, and adapted to harsh environments.

Chapper

Pakistan. Female 20 kg; male 24 kg. Originating in dry regions, this meat and milk goat is a nonseasonal breeder with outstanding potential.

Barbari

Pakistan, India. Females 20-25 kg; males 20-40 kg. A prolific, fastgrowing “urban” goat with high twinning and low mortality. Often kept inside houses, they adapt well to confinement and are important for both milk and meat.

Gaddi (White Himalaya)

Hill districts of northern India. 25-30 kg. Kept for meat and their long, lustrous white hair, they are pure-breeding and healthy.

Changthangi (Ladakh)

Kashmir, India. Male 20 kg. A pashmina (cashmere) goat of India, it is adapted to a high altitude, high humidity climate with extremes of temperature.

Terai

Nepal. 8-12 kg. A very small, hardy animal of the southern lowlands, it kids year-round (sometimes twice), and often produces twins.

Southern Hill Goat

Nepal. 12-16 kg. A small, mid-altitude goat resembling the Terai.

Black Bengal (Teddy, Bangladesh Dwarf)

Eastern India and Pakistan. Female 10 kg; male 14 kg. A widespread, humid-area, meat goat that is early maturing and very prolific. It kids twice a year, and produces 60 percent twins and 10 percent triplets. It produces a superior leather.

Katjang

Southeast Asia, China, and Pacific Islands. In places, less than 20 kg. A widespread, highly variable, hardy goat adapted to humid conditions, it usually has twins or triplets. Used for meat and skins, with exceptional females being milked.

Chinese Dwarf (Tibetan, Jining, Fuyang, or Chengdu Grey)

China. 20-40 kg. Well adapted to the humid tropics, it normally twins and is a good meat producer.

Heuk Yumso

Korea. Female 25 kg; male 35 kg. A prolific cold-climate goat with a year-round breeding season. The meat is highly prized, and often sells at a premium due to its supposed health-giving effects.

Hejazi

Middle East. Female 20 kg; male 20 kg. A meat goat, usually black, for harsh desert conditions.

Sinai (Black Bedouin)

Sinai, Egypt and Negev Desert, Israel. Female 20 kg; male 50 kg. Native to dry, hot deserts, this milk and meat goat matures at 5-8 months and has a twinning rate over 50 percent. A most important characteristic is its drought tolerance. The female, for instance, can drink only once a day – at a pinch, once every other day – without losing appetite or reducing milk flow.

WILD RELATIVES

Several wild relatives will cross with the goat. Surprisingly, they have the same chromosome number (2n=60), and the offspring are frequently fertile. Although essentially unknown to agricultural science, these hybrids may offer a new gene pool for creating new farm animals and for improving the world’s goats. They seem to combine the self-reliance of wild species with the usefulness of domestic ones. Artificial insemination and other modern techniques could make them easier to produce today than ever before.

Ibex*

A project in Israel has already produced a cross between the goat and the Nubian ibex (Capra ibex). The Sinai Desert goat, the breed that was used, ranks next to the camel in its ability to go without water – it often drinks only twice a week – but its meat has such a strong flavor that most people consider it dreadful. On the other hand, the ibex is compact and muscular and produces tender, mild meat that steak lovers find delicious. The product from crossbreeding the two is a creature seemingly able to endure extreme temperatures and drought, make use of poor pasture, and produce wonderful steaks.

A herd of several hundred of these hybrids (dubbed ‘ya-ez”) has been created at Kibbutz Lahav in the northern Negev Desert area. Both sexes are fertile, and they can be bred with each other or with either parent. The meat is already in demand on the menus of elegant Tel Aviv hotels.

Markhor**

In Pakistan’s northern uplands, it is not uncommon to find hybrids between domestic goats and the mountain goat known as “markhor” (Capra falconeri). Each year in Chitral and Gilgit, they can be found in the goat markets.

Markhors inhabit high elevations in rugged mountains and thrive on diets so meager as to be useless to goats. The hybrids are produced when markhor males – perhaps ousted by more dominant males – come in contact with feral domestic goats. However, some farmers raise young markhor and goats together (to overcome mutual resistance) and produce their own hybrids,

For a single hybrid animal local goatherds pay up to 5,000 rupees, a princely sum in this impoverished region. Traditionally, villagers have kept them as stud animals. They appreciate the animal’s genetic endowment. Markhors tolerate extremes of cold and snow, are nimble and skilled at escaping predators, and survive on scanty fodder, Moreover, they have a high reproduction potential because they generally produce twins. As a result, they also tend to give more milk and it is rich in nutritive value. Instead of long body hairs, markhors possess insulating underfur – a soft and valuable raw material for the famous Kashmiri shawls.

Apparently, the hybrids can possess many of these qualities together with a calm disposition. Thus they could be useful in themselves and as conduits for passing such traits on to goats.

3. Microsheep

Among the hundreds of breeds of sheep (Ovis aries) in the world, those weighing less than 35 kg when mature have been largely ignored. Although these are common, the impression lingers that they are too small to be useful. Yet this virtually untapped gene pool is esnecially well adapted to traditional Third World animal husbandry. Given attention, these “microsheep” could boost meat, milk, skin, wool, and pelt production in many villages and small farms of Africa, Asia, and Latin America.

Many microsheep thrive in environments that tax the ability of larger breeds to survive. They are adapted to poor feeds and can be grazed in uncultivated wastelands unsuited to any other livestock except goats or camels. Because of their size, microsheep can fatten in areas where forage is so scattered and sparse that larger animals cannot cover enough ground to fill their bellies each day. In addition, their foraging complements that of other livestock. For example, sheep can graze rough grasses and weeds that cattle find unpalatable. Some survive even the stress of extreme aridity and for this reason are the predominant livestock in North Africa and the Middle East.

Many small breeds can be disease resistant. Some, for example, are widespread in the zones of Africa where trypanosomiasis is prevalent. They are generally less adversely affected by foot-and-mouth disease than are cattle, and some small native sheep seem to have fewer problems with insects and parasites than do most other livestock, including temperate-area sheep.

Giving more attention to the management and improvement of microsheep could pay back abundantly in the form of food, income, and improved land utilization in many parts of the developing world.

AREA OF POTENTIAL USE

Worldwide, but notably in drier regions of the tropics.

APPEARANCE AND SIZE

An average weight for temperate sheep breeds is about 70 kg,’ but the smallest microsheep weigh less than 20 kg fully grown. Many tropical microsheep are “hairless,” and have little or no wool. These are often difficult to distinguish from goats, but (like all sheep) they generally have blunter snouts, more fat, and hanging tails. Some have greatly enlarged rumps or tails that store fat. Unlike goats, sheep have no odor-producing glands.

Some representative microsheep are described at the end of this chapter.

DISTRIBUTION

More than one billion sheep occur worldwide, and they occupy every climatic zone in which people live. At least half are in developing countries.

STATUS

Although more than 1,000 breeds are recognized, only a handful dominate the world’s sheep industries. Lesser-known breeds are rapidly becoming extinct (especially in developed countries, although scattered efforts are being made to preserve them). Elsewhere, genetic resources have not been properly evaluated, and potentially valuable stock is being lost before it is even understood.

HABITAT AND ENVIRONMENT

Sheep are among the most adaptable animals. Various types are kept in areas of extreme heat, cold, altitude, aridity, humidity, and rainfall. They are especially widespread in hot, dry climates, but some breeds also thrive in humid areas.

BIOLOGY

Sheep make efficient use of a wide variety of fodder: tree leaves, fortes, grasses, crop residues, and agricultural by-products, for instance. They often survive privation by calling on their reserves of body fat.

In the tropics, sheep reach sexual maturity in about a year. Many breeds lamb year-round, which allows for a continuous production of premium meat. Gestation takes about five months, and lambing is usually timed to occur when feed is most abundant and nutritious. Microsheep often bear two or more young and, under good management, may produce lambs annually for more than five years.

BEHAVIOR

These shy animals flock together and, in general, are managed with little effort. They are easily panicked, however, and rams can become aggressive during rutting or when threatened.

THE LITTLE SHEEP THAT COULD

Dozens of the world’s neglected breeds of tiny sheep should be preserved from extinction, for many will undoubtedely prove to have outstanding qualities. Current efforts to save the Navajo sheep in the United States exemplify what can be achieved

The Navajo is a microsheep, and is perhaps the oldest breed of sheep in the United States. It may have been introduced to North America in 1540 by the Spanish explorer Francisco Vazquez de Coronado, who was seeking the mythical Seven Golden Cities of Cibola in the region that is now Arizona and New Mexico. Smaller than many dogs, a full-grown Navajo sheep may weigh only 30 kg, but it became a big part of the culture of the Southwest. Although the Navajos and other local Indians had never seen sheep before the 1500s, they soon became shepherds and weavers, and their rugs made from the unique wool of this wiry little animal remain famous even today.

Navajo sheep have white or brown wool hanging in ringlets around their bodies. The fleece is a double coat: long, coarse guard hairs on the outside and short wool on the inside. It yields warm, waterproof, and long-lasting products. Many of the sheep have four horns because the Indians believed that this trait was sacred, and they favored four-horned rams for breeding purposes.

The number of Navajo sheep was reduced sharply between 1950 and 1950 because of severe overgrazing and replacement by improved wool breeds. In recent times there has been so little commercial and scientific interest in this microsheep that by the 1970s only a handful of purebred specimens survived. Since the late 1970s, however, Lyle McNeal, a Utah State University professor, has been working to save it from extinction. By 1988 he had a burgeoning flock at the university and was learning that this supposedly obsolete dwarf is amazingly useful.

The breed originated in the arid south of Spain (where it is called the “churro”), and it thrives in the hot, dry climate. Unlike normal breeds, it can exist in the desert without supplementary food and with little water. As McNeal has pointed out, any sheep that can survive and raise a lamb in the aridity and searing heat of the American Southwest has to be superior. He has found that the ewes have a strong maternal instinct, which is vital for protecting lambs against the coyotes that are common in the region.

Thanks to the efforts of McNeal and his colleagues, Indians are beginning to use Navajo sheep again; by 1988 there were more than 400 on the Navajo reservation, with their wool fetching premium prices. This tough little sheep could prove valuable not only for American Indians but for poor people in many other dry regions as well.

USES

Microsheep are mainly kept for meat production, but – especially in arid regions – for milk as well. Their meat is usually lean with little “muttony” taste.

Wool or hair is taken from many breeds, although the yield is often small. Skins from hair sheep’ thinner than cowhide, are widely used and are in international demand. In some places, manure is considered an important product. In Nepal, thousands of small sheep are used as pack animals, especially to carry salt into mountain valleys.

HUSBANDRY

Most sheep are maintained in free-ranging flocks. Many are grazed (often tethered) over a small area during the day and confined in a “fold” at night. Others are penned or kept as village scavengers. These are usually fed supplements of household scraps.

Sheep form an integral part of a mixed farming economy; for example, they may graze pastures during the wet season, and survive on crop residues and field weeds during the dry season. They have excellent foraging capabilities and are often kept alongside goats. This broadens the variety of forages utilized and often increases total production from a single piece of land, for sheep and goats have complementary feeding habits and male goats help protect the sheep from some predators.

In spite of the heavy toll that predators (such as feral dogs) can take on lambs and ewes, the largest proportion of sheep in the tropics are lost through lack of basic care. Modest supplemental feeding of lambs and inexpensive preventive medicines can do much to lower mortality and boost production.

ADVANTAGES

Sheep are multipurpose animals, and almost everywhere they produce several products. The rich milk is often preferred to that of cows or goats, especially for making cheese and yogurt.

Lambs form an important part of the household economy for much of the rural world, and only rarely is social or religious stigma attached to keeping or eating them. Indeed, sheep are the traditional feast animals of several religions, and in some places sheep meat is preferred to beef and sells at a premium.
By and large, all sheep products can be processed, utilized, or marketed by the producer. In addition, sheep marketing and transportation systems exist in most countries, at least to some degree.

Sheep are efficient producers and can provide a quick turnover for food and cash. On the brush and coarse grasses of marginal lands, they may be more productive than cattle, and on grass they may outproduce goats. As long as they are not overstocked, sheep do not degrade vegetation; unless starving they will not debark trees. Small breeds cause little erosion, even on steep slopes, heavily traveled paths, or near water holes.2 In South Asia, they have been continuously stocked on the same ground for thousands of years without causing apparent harm.

Because sheep have a natural tendency to accumulate fat, they “finish” well on grazing and usually do not require a high-energy finishing diet.

LIMITATIONS

Despite their general healthiness, sheep are affected by many internal parasites and diseases, a few of which are communicable to man. They are especially susceptible to infectious conjunctivitis (pinkeye).

Predators and thieves can be greater threats than sickness. Labor inputs can be high because of the almost continual protection sheep need.

Some mutton has a strong taste that many find unappealing. However, the taste is carried mainly by the fat, and the generally lean microsheep are often commended for their fine-textured, sweet meat.

RESEARCH AND CONSERVATION NEEDS

The numerous breeds of small sheep should be investigated. Assessments should be made for the animals’ ability to thrive under adverse conditions and for resistance to particular diseases and parasites.

As noted, even minimal extension services and veterinary support for sheep could greatly decrease mortality, especially among lambs.

Improving microbreeds without increasing their size is one of the most interesting challenges facing sheep scientists today. While efforts should be made to conserve and select within types, research should also be conducted on hybrid vigor. Efforts to improve the pelt and fleece of microsheep should also be encouraged.
More studies on the interactions between sheep and cropping systems are needed. Sheep (and the manure they produce) could become important components of forestry (see sidebar), crop rotation, alley cropping, and other forms of sustainable agriculture. For instance, sheep are especially effective for weed control in plantation crops such as oil palm and rubber as well as in forests.

SMALL SHEEP IN THE FOREST

Even in countries with long traditions of raising large sheep, there are opportunities for using small, agile, hardy breeds. The following is an example.

Seeking safer methods for stopping brush from smothering newly planted trees, U.S. government foresters have turned from chemical defoliants to flocks of sheep. Court decisions in 1983 and 1984 barred the use of herbicides along Oregon’s Pacific Coast. Various alternatives were tried, and the animals proved the most successful. Sheep are now the favored method for controlling unwanted vegetation. Indeed, they have changed the foresters’ whore approach to managing reforestation.

Formerly, the U.S. Forest Service allowed the brush to grow on logged-over sites and then sprayed it down before planting tree seedlings. Now it plants grass to suppress brush and reduce erosion. The sites are later fertilized, tree seedlings are planted, and within a year sheep are brought in to graze.

Today, in the district around Alsea, Oregon sheep nimbly skirt old stumps to graze on the lush vegetation. Three times each summer since 1984, about 2,000 sheep have been guided across the replanted areas by a herder and a range conservationist. The sheep eat both the grass and the new buds on brush, but they leave most fir-tree seedlings untouched. The key, according to Rick Breckle, a forester, is to have enough sheep to graze an area evenly and to keep them moving so they don’t resort to nibbling the young trees.

Previously, chemical brush treatments had annually cost $135-$353 per hectare. Now, sowing grass and grazing sheep costs about $300 per hectare. And there is a product to sell: the adult sheep don’t fatten well, but the lambs bring a useful income at the end of the summer. What is more, Breckle reports that the trees seem to be growing faster – probably because of the manurings they receive.

This method seems likely to be effective elsewhere – at least with trees that are unpalatable or too tall for their growing points to be nibbled. Malaysia, for instance, doubled its sheep population between 1986 and 1989, in part because it has begun raising sheep between the trees in rubber plantations. With the use of agroforestry increasing worldwide, small sheep could find a whole new application.

REPRESENTATIVE EXAMPLES OF MICROSHEEP

West African Dwarf

Senegal to Nigeria, and south to Angola. Female 25 kg; male 35 kg. Well adapted to warm, humid conditions. Prolific, and good disease resistance. Major meat producer in West Africa. Fast growing: by six months of age they approach adult weight.

Landim (Small East African)

East and Central Africa. 23-40 kg. Prolific, adaptable, long fat-tailed type. Large litter size for a sheep. In one recent test, ewes averaged more than 1.4 lambs.3

Berber

Atlas Mountains. 25-41 kg. Needing little feed and remaining constantly outdoors, these extremely hardy sheep are exploited for meat and their coarse, hairy wool. They fatten easily when well fed.

Arab

North Africa. 40-50 kg. This thin-tailed sheep is exceptionally robust, and is resistant to extremes of temperature, drought, and poor nutrition. Primarily a meat producer, its wool is used for coarse cloths and carpets.

Southern Sudan Dwarf

One of the many small breeds of eastern and southern Africa, its weight ranges from 15 to 25 kg, but it may weigh as little as 11 kg. Yielding a fine, short fleece, this hardy, frugal sheep is often run with cattle to maximize grazing.

Hejazi

Deserts of Arabia. 32 kg. A popular and ancient fat-tailed meat producer that is highly acclimatized to drought and privation.

Zel (Iranian Thin-Tailed)

Caspian region of northern Iran. Female 30-32 kg. Well adapted to subtropical regions, they produce coarse wool, milk, and excellent meat that lacks the “mutton taste” and odor of some sheep meats.

Greek Zackel

Mountain and island types. Female 30 kg; male 40 kg. These common sheep are active, hardy, and resistant to extremes of climate and disease. Primarily a milking sheep, their wool is used locally and lambs are slaughtered for special occasions.

Sitia

Crete. Female 25 kg; male 30 kg. Another of the hardy, screwhorned “zackel” sheep common to the Balkans, they are adapted to poor pasturage and extensive herding. Quick maturing and highly fertile, they can be exploited for milk as well as for meat and coarse wool.

Common Albanian

Female 25 kg; male 35 kg. Similar to the Greek Zackel, they are used as triple-purpose animals: meat, milk, and wool. They survive in low, marshy areas where parasites are common.

Zeta Yellow

Yugoslavia. Female 25 kg; male 35 kg. A small, hardy sheep used for milk and some meat, its primary product is wool. Often unshorn for several years, the long fibers are woven into expensive carpets.

Pag

Yugoslavia. Female 20-30 kg; male 25-35 kg. These wool, milk, and meat sheep are frugal and well adapted to scant vegetation and rocky terrain. Although they have a low birth rate and carcass yield, their milk and wool are commercially exploitable.

Roccia (Steinschaf)

Northern Italy, Austria. Female 30 kg; Male 30-35 kg. These “stone sheep” resemble a goat in their ability to exploit the poor pastures of high, steep, rocky mountains. Although not highly productive, they are hardy and frugal and commonly produce twins.

Corsican

Corsica (France). 25-30 kg. A hardy native breed that is well adapted to rather sparse feed conditions. Coarse wool, both white and black, is well suited for hand processing.

Entre Douro e Minho

Portugal. Female 15-18 kg; Male 20-25 kg. These independent sheep yield a good wool in mountainous terrain that would otherwise be nonproductive.

Churra do Campo

Portugal. Female 20 kg; male 30 kg. A coarse-woofed sheep extensively kept in Portugal’s dry interior for milk and wool.

Galician

Spain. Female 18 kg; male 25 kg. A milking breed that survives on poor pasture, it also produces a marketable wool.

Soay

Scotland. Female 25 kg; male 30 kg. Adapted to wide temperature variations. Possibly the most primitive domesticated sheep of Europe, probably unchanged from Viking times. Immune to foot rot. A wool sheep with short brown fleece that is shed annually.

North Ronaldsay (Orkney)

Northern Scotland. 27-32 kg. Surviving year-round on seaweed, this rare breed is adapted to high salt intake and the associated digestive problems. Yield 1-2 kg medium-coarse wool.

Criollo

Latin America. Derived from ”native” Spanish Churro and Merino sheep. Many are small and very hardy.

Navajo-Churro Southwestern United States. Female 45 kg; male 70 kg. Maternal, and very resistant to internal parasites and hoof rot. Although the Navajo subsists and reproduces on little feed and scarce water in desert regions, it was widely replaced by improved breeds earlier in this century. Because of its hardiness, however, and the use of its wool in traditional weaving, its numbers are rebounding (see sidebar, page 50).

Florida Native Southeastern United States. Females 35-45 kg; males 45-6O kg. This long-isolated and highly variable sheep is adapted to harsh subtropical climates and is known for its ability to forage. A medium-wool breed, it is very resistant to intestinal parasites. Verging on extinction due to neglect and uncontrolled crossbreeding.

Virgin Islands White Hair (St. Croix)

Caribbean. Female 35-45 kg; male 45-55 kg. Hair sheep with some wool in young animals. Well adapted to warm humid conditions, it has fairly good disease and parasite resistance and produces good meat. Prolific, it breeds most of the year and commonly has twins.

Magra (Chokhla)

Northwest India, Pakistan.4 20-25 kg. Adapted to hot, dry areas, the extremely white and shiny fleece is valued for carpet wool. Slowmaturing and low fertility (lambing at 45 percent) plus extensive crossbreeding have led to serious declines in population.

Marwari

Northwest India. 25-30 kg. A widespread, white-fleeced sheep that has a high resistance to disease and worms, good fertility, and low mortality. They do well in large flocks.

Mandya (Bandur)

Southwest India. Female 25 kg; male 35 kg. An outstanding meat breed with good mutton quality, it adapts well to mixed farming and has unusually low lamb mortality.

Hu (Huyang, Lake Sheep)

China. Female 35 kg; male 45 kg. These fat-tailed sheep have a six month lambing interval and are very prolific. They are used under intensive management to produce meat, wool, and a valuable lambskin.

Javanese Thin-Tail

Indonesia. 25-40 kg. Widely held as a “bank account,” these meat, manure, and skin sheep are well known for being prolific. Although single lambs are not uncommon, litters of six have also been recorded.

WILD AND WOOLLY

Considering that dozens of countries depend on the productivity of more than a billion domesticated sheep, it is remarkable that their wild ancestor is accorded no attention. This fast-declining animal is now little more than a trophy for hunters, a fact that should be of vital intemational concern.

Sheep were domesticated in the Middle East and Central Asia in the Stone Age era between 8,000 and 11,000 years ago.* Their wild ancestor was almost certainly the mouflon (Outs orientalis). However, domestication may have occurred in more than one place, and two other wild creatures, the urial (Outs vignei) and the argali (Outs ammon), also possibly provided genes to some sheep breeds.

The mouflon, urial, and argali still exist in the mountains of Central Asia, and a European subspecies of mouflon is also found in the Mediterranean, but only on Corsica, Cyprus, and Sardinia.** Because they live in remote, rugged, upland areas, these wild sheep are usually undisturbed, but the numbers are decreasing everywhere.

This may be a serious loss because these animals could be extremely valuable. They are capable of crossing with domestic sheep, and the offspring are viable and fully fertile.*** For developing new meat-producing breeds, their potential seems almost limitless.

During the thousands of years that sheep have been protected by humans, their wild ancestors have continued to face predators, parasites, disease, extreme cold and seasonal starvation. Their genetic endowment, forged and tempered in unforgiving harshness, could be a benefit for all future sheep generations. These animals appear to resist various diseases. Their meat is reported to be of excellent quality, notably lacking the strong mutton flavor that many people find objectionable. They have relatively short, thin tails – a feature that might eliminate the need for docking (tail removal) in the domestic flock. Some (for instance, the Asian mouflon and the urial) have rates of effective reproduction up to 1.6 lambs per ewe, more than twice the average of most domestic types, especially under the conditions where these wild creatures live.

That mouflon and other wild sheep could have practical utility is suggested by research at Utah State University. Scientists there have mated mouflon with farm sheep to create sheep better able to defend themselves against coyotes and other natural dangers. Half-wild, half-tame sheep hybrids have existed on a ranch in southern Utah for the past decade. Also, in Cyprus similar mouflon x sheep hybrids have shown considerable promise.

At the very least, this wiry little mountain sheep could be a model for educating students and the public. It is a living reminder of the fantastic changes that can be induced in animals by selection for various traits. Also, it is a “map” to the history of sheep domestication. Studies of mouflon genes, blood immunology, morphology, physiology, horn structure, skeleton, fleece, temperament, and a host of other features would help unravel the ancestry. These studies and various biochemical analyses would be a fascinating contribution to agriculture, science, history, and the public perception of the origins of our natural resources.

Genes from wild sheep are not likely to quickly benefit wool production. Lack of fleece is one reason why these creatures have been neglected but throughout most of Asia and in North Africa, sheep are bred primarily for meat and milk, and there is a growing worldwide interest in the use of hair sheep. All of this brings new possibilities for the use of this old resource.

4. Micropigs

Most breeds of swine (Sus scrofa) are too large to be considered microlivestock, but there are some whose mature weight is less than 70 kg. These micropigs are particularly common in West Africa, South Asia, the East Indies, Latin America, and oceanic islands around the world. At least one, the Mexican Cuino, may weigh a mere 12 kg full-grown.

Many miniature swine have been developed for use in medical research, but their agricultural potential has been largely ignored. This is unfortunate, for micropigs of all types – native, feral, and laboratory – deserve investigation. Swine provide more meat worldwide than any other animal, and micropigs are potentially important sources of food and income for poor people in many parts of the developing world.

Smallness makes for nimble and self-sufficient pigs, in contrast to large, lethargic breeds. Small breeds are easier to manage and cheaper to maintain; the threat of injury from angry or frightened animals is lessened; and the sows are less likely to crush newborn piglets, often a major cause of mortality in large breeds. Some micropigs – particularly those from hot regions or wild populations – also have a higher resistance to heat, thirst, starvation, and some diseases.

Pigs adapt to a wide variety of management conditions, from scavenging to total confinement; some are even kept indoors.2 They gain weight quickly, mature rapidly, and help complement grazing livestock because they relish many otherwise unused wastes from kitchens, farms, and food industries, as well as other foods such as small roots, leafy trash, or bitter fruits that are not consumed by humans or ruminants.

For these reasons, micropigs could become useful household and village livestock in the developing world, and they deserve greater attention than they now receive. Although their growth may not be as rapid as that of improved breeds raised under intensive commercial production, with modest care and minimum investment, backyard micropigs can produce sizable yields of meat and other products, as well as improved income for rural and even urban populations.

AREA OF POTENTIAL USE

Worldwide, especially in warm, humid areas.

APPEARANCE AND SIZE

Like full-sized breeds, micropigs are stout-bodied, short-legged animals with small tails and flexible snouts ending in flat discs. Examples of some micropigs are listed at the end of the chapter.

DISTRIBUTION

Domestic pigs are found all over the world, but their concentrations vary greatly. Africa has the fewest per capita, but in recent years they have gained increasing favor in the sub-Saharan regions. In Latin America, pigs have long been a major component of backyard agriculture. In the Middle East, an early center of domestication, pigs are not widely kept today because of religious dietary restrictions. In the Ear East, they are the major meat source, and China has more pigs than any other country. And in the Pacific region, pigs and chickens are often the only meat available.

STATUS

Pigs are becoming more popular: their worldwide numbers increased by about 20 percent in the 1970s. However, in most countries commercial pig production has focused on a mere handful of breeds, and much genetic diversity is unstudied or even threatened with extinction. Some microbreeds have already been lost, and others are dwindling in numbers.3 Many European breeds have been completely lost. The Cuino and some other Latin American criollo types are threatened, as are most of Africa’s traditional breeds. China, however, has made notable efforts to preserve its native types.

HABITAT AND ENVIRONMENT

Although, as previously noted, pigs are found all over the world, they are in general adapted to warm, humid climates where many other livestock species are more susceptible to diseases and environmental stresses. They are also raised at high altitudes, such as in the Andes and Tibet. Although there are few climatic limitations to pig production, only about 20 percent of the world’s pigs are currently kept in the tropics.

BIOLOGY

Pigs are omnivores, willing and able to eat almost anything.4 Unlike most other livestock, they eat their fill and sleep as the food digests, allowing humans to establish a convenient eating and sleeping schedule.

Pigs are prolific; a few Chinese breeds routinely have litters of 20 or more. Micropigs are no exception; litters of 6-10 are common. Piglets gain weight rapidly and can be weaned after a few weeks. Sexual maturity is sometimes attained as early as 4-6 months, depending on breed and environment. Pigs are usually slaughtered at 67 months of age, allowing them to be produced on an annual cycle. They can live 10-20 years.

Because of their smaller size, micropigs have a relatively greater skin-to-weight ratio than today’s commercial breeds, and therefore they probably shed heat more effectively. Certainly they seem to perform better in tropical heat and humidity, which normally keep the heavier types from reaching their maximum productivity. Studies have suggested that an optimal size for some tropical environments – because of metabolic and feed efficiency – may be less than 65 kg.5

BEHAVIOR

Pigs are social animals; they enjoy companionship and ferociously defend their young and sometimes even the humans who care for them. They are employed as guard animals in some areas and have been used extensively in behavioral research.

Contrary to common belief, pigs are clean and tidy if provided adequate space. Larger breeds, however, wallow in mud to stay cool in hot weather and require a wallow or shade (except for some Latin American types, which seem less susceptible to heat). Some lightcolored pigs sunburn easily.

Pigs will dig up earth with their mobile snouts; some breeds do it constantly.

USES

Fresh pork is the major pig product in tropical areas. It usually fetches premium prices, and in many places (such as the Pacific Islands and China) it is the most important red meat available to rural people. Nutritious and tasty, it is one of the easiest meats to preserve, needing only salt or melted fat. Processed products such as bacon and sausages can be important for both home consumption and cash sales.

Pig fat (lard) is a good source of food energy, and can substitute for cooking fats and oils. It is easily melted and clarified, is widely used to make soap, and is a valuable commercial product.

Pig skin, once degreased, is easily tanned into leathers that are popular for garments, shoes, and other products demanding soft, light, and flexible leathers.

Pig manure is a good fertilizer. Because the animals are often kept in confinement, it can be easily collected.

HUSBANDRY

In many places, pigs are kept as free-roaming scavengers. They can be trained (by coaxing with feed, salt, or affection) to keep close to home, thereby helping to minimize destructive scavenging.

Herding is a higher level of management that requires more effort, but it allows pigs to be integrated into other types of agriculture while utilizing feeds that otherwise go to waste.

Because their exercise needs are minimal and dominance is quickly established within litters, pigs are the easiest hoofed livestock to raise in small enclosures (sties). However, fencing must be secure, and if sties are small, the animals must be moved frequently to prevent diseases and parasites from building up.

ADVANTAGES

Pigs are well-known, often traditional, animals in many areas, and people usually do not have to be taught how to manage and use them. Efficient scavengers, they can live, grow, and reproduce with a minimum of investment or specialized care.

Pigs are highly efficient converters of feed to meat. They can provide the greatest return for the least investment of any hoofed livestock because of their fecundity, low management costs, broad food preferences, and rapid growth.

Pigs normally accumulate fat during adolescent growth (making ”finishing” feeds less necessary). Some micropigs (especially those from feral ancestors) have the ability to quickly mobilize and store these body-fat reserves; in times of extreme scarcity, it aids their survival.6

Pigs work well in multiple-cropping schemes. They are often used to help clear small plots by uprooting weeds, shrubs, and even small trees. In Southeast Asia, they are frequently raised in conjunction with aquaculture, their manure providing food for the fish.

LIMITATIONS

If improperly managed or maintained in filthy conditions, pigs may quickly succumb to disease and parasite epidemics. Most diseases are communicated only among pigs, but some can be transmitted to humans. For this reason, pork should always be fully cooked.

Some cultures never eat pork. Others do, but nonetheless accord pigs and their keepers low status.

Young pigs are vulnerable to many predators.

RESEARCH AND CONSERVATION NEEDS

A major survey of small pig breeds is needed. They have the potential to be valuable producers in their own right, as well as to improve other pig breeds. For instance, they represent a little-known reservoir of disease resistance and climatic adaptation. Governments, research stations, universities, and individuals should make special efforts to preserve types that have outstanding or unusual qualities.

When it is necessary to eradicate feral pig populations (as is common on Pacific islands), representative stocks should be preserved. These rugged animals have been genetically isolated for decades or even centuries and are likely to carry valuable traits for survival under adversity.

Large breeds may be promising candidates for genetic “downsizing,” which has already produced the many types of miniature pigs that are used in medical research.

THE LITTLEST PIG

Although this chapter highlights the world’s smallest breeds, there exists a pig that is even smaller. It is, however, an entirely different species and it is on the brink of extinction.

The pigmy hog (Sus salvanius) is a shy and retiring wild creature of northeastern India. It is merely 60 cm long with a shoulder height of 25 cm, and weighs less than 10 kg. It was once found widely along the southern foothills of the Himalayas. Today, however, it apparently occurs in only one area, the Manas National Park in Assam. Despite this protection and the fact that it is listed among the 12 most endangered species on earth, it still falls victim to hunters and to habitat destruction – especially illegal grass fires.

If saved from extinction, this minute species – barely reaching a person’s calf – might become useful throughout the world. Its chromosome number is the same as that of the common pig and its physiological processes are probably also similar. Therefore, were its numbers to be built up, it might become a valued and well-known resource for laboratories and small farms. Its daily food intake and its space requirements are only a fraction of a normal pig’s. It probably has exceptional tolerance to heat, humidity, and disease.

This is not a domesticated species, and there is therefore much to learn before its usefulness can be clearly seen. Indeed, whether it can be reared in captivity is uncertain. Some attempts have ended in disaster, but this seems to have been the result of mismanagement.

Before there is any possibility of developing it, however, the pigmy hog must be preserved from ultimate loss. The last specimen could go into a villager’s pot at any time now.


Adult male of the common pig (wild boar) and pigmy hog draw to same scale. (W.L.R. OLIVER)

REPRESENTATIVE EXAMPLES OF MICROPIGS

West African Dwarf (Nigerian Black, Ashanti)

West Africa. Mature weights of 25-45 kg are reported. In the humid lowland forests of West Africa this breed has long been kept by villagers, often as a scavenger. Indigenous to the hot, humid tsetse zones of West Africa, it seems resistant to trypanosomiasis.

Chinese Dwarfs

China (and Southeast Asian countries such as Vietnam) has long had small pigs – often characterized by numerous teats and large litters – associated with traditional intensive agriculture as well as scavenging conditions. Some Chinese pigs weighing less than 70 kg are adapted to tropical and subtropical conditions, but the smallest (20-35 kg) live in the cold climates and high altitudes of Gansu, Sichuan, and Tibet. Small black Chinese pigs were crossed with European types in the early 1800s and produced the foundation stock of many modern Western breeds.

Criollo

There are a number of “native” breeds throughout Latin America commonly known as “criollo.” Many are quite small. Although, apparently, they are slow to mature and bear small litters, they adapt well to environmental extremes and are widely kept by rural inhabitants for food and income. Criollos are little studied and are being replaced by imported breeds before their possibly outstanding qualities can be quantified.

Cuino

This micropig from the highlands of central Mexico may be descended from small Chinese types and is the smallest domestic pig, weighing as little as 10-12 kg fully grown. Hardy and an efficient scavenger, it can grow quickly when feed – especially corn – is abundant. A century ago the cuing was a widespread household animal and was used for a time for experimental work in central Mexico. It is now little known and could be threatened with extinction.

Black Hairless (felon, Tubasqueno, Birish)

These small pigs of central and northern South America survive in hot, humid, adverse climates. They are adapted to bulkier feeds than most pigs and can thrive on fruit wastes. Many local types exist.

Nilo (Macao, Tatu, Canastrinha)

This small, widespread, black, hairless pig of Brazil is often kept inside the house.

Yucatan Miniature Swine

A subtype of the black hairless from Mexico’s hot, arid Yucatan Peninsula, it was imported into the United States in 1960. It has been downsized for laboratory use in the United States and is known as the Yucatan Micropig (registered). Weight at sexual maturity has been lowered through selective breeding from 75 kg to, currently, between 30 and 50 kg, with an ultimate goal of 20-25 kg. There is no evidence of “dwarfism,” stunting, or loss of reproductive performance, and it appears to hold notable promise as microlivestock for developing countries. The parent stock, used for meat and lard production in Yucatan, is renowned for gentleness, intelligence, resistance to disease, and relative lack of odor. Exceptional docility, even in older boars and sows with litters, makes them easy to handle without the need for specialized housing or equipment.

Other Laboratory Breeds

Other miniature laboratory pigs have potential for tropical use. These include the Goettingen, Hanford, Kangaroo Island, Ohmini, Pitman-Moore, and Sinclair (Hormel). In general they weigh 30-50 kg when ready for slaughter and mature at less than 70 kg.

Ossabaw

United States. 20-30 kg. Feral on Ossabaw Island, South Carolina, for more than 300 years, this pig is well adapted to environmental extremes. Unlike most domestic animals, it can maintain itself in coastal salt marshes. It has perhaps the highest percentage of fat of any pig. The piglets are very precocious, self-reliant, and robust.8

Kunekune (Pua’a, Poaka)

New Zealand. Female 40 kg; male 50 kg. Perhaps of Chinese origin, these black-and-white spotted pigs are docile, slow, and easy to contain. Although late maturing, they can fatten on grass alone. Like other native breeds throughout the Pacific region (for example, the Pauta of Hawaii), stock is being lost through crossbreeding, displacement by other breeds, and eradication efforts.

To find certain disease-resistant genes in poultry it may be necessary to go looking in the backyard chicken flocks in Latin America, Africa, or Asia.

Kelly Klober

Small Farmer’s Journal. . . Policies are needed to encourage development of a labor-intensive small-scale livestock sector, which would increase employment and provide a major market for surplus cereals. This sector, however, is particularly restrained by poor technology, poor public support services, and poor marketing channels. Third World livestock production of this type could provide a natural focus for foreign assistance that earlier seemed inappropriate because of concerns about global food scarcity.

John W. Mellor International Food Policy Research Institute

Successful development of agriculture often requires an intimate understanding of the society within which it is to take place – of its systems of values, of its customary restraints…. It has been necessary to understand what incentives the farmer needs to change, what practical difficulties he encounters introducing change, what his traditional pattern of land use is and how this pattern or system can be upset by thoughtless innovation.

John de Wilde

Experience with Agricultural Development in Tropical Africa

Related Articles

Micro-livestock: Little-known Small Animals with a Promising Economic Future

Source: CD3WD


Topics: Farming Methods, News & Updates, Social Issues | No Comments »

Comments